3.10 \(\int \frac{a+b \text{csch}^{-1}(c x)}{x^3} \, dx\)

Optimal. Leaf size=50 \[ -\frac{a+b \text{csch}^{-1}(c x)}{2 x^2}+\frac{b c \sqrt{\frac{1}{c^2 x^2}+1}}{4 x}-\frac{1}{4} b c^2 \text{csch}^{-1}(c x) \]

[Out]

(b*c*Sqrt[1 + 1/(c^2*x^2)])/(4*x) - (b*c^2*ArcCsch[c*x])/4 - (a + b*ArcCsch[c*x])/(2*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0372564, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6284, 335, 321, 215} \[ -\frac{a+b \text{csch}^{-1}(c x)}{2 x^2}+\frac{b c \sqrt{\frac{1}{c^2 x^2}+1}}{4 x}-\frac{1}{4} b c^2 \text{csch}^{-1}(c x) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/x^3,x]

[Out]

(b*c*Sqrt[1 + 1/(c^2*x^2)])/(4*x) - (b*c^2*ArcCsch[c*x])/4 - (a + b*ArcCsch[c*x])/(2*x^2)

Rule 6284

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcCsch[c*
x]))/(d*(m + 1)), x] + Dist[(b*d)/(c*(m + 1)), Int[(d*x)^(m - 1)/Sqrt[1 + 1/(c^2*x^2)], x], x] /; FreeQ[{a, b,
 c, d, m}, x] && NeQ[m, -1]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{a+b \text{csch}^{-1}(c x)}{x^3} \, dx &=-\frac{a+b \text{csch}^{-1}(c x)}{2 x^2}-\frac{b \int \frac{1}{\sqrt{1+\frac{1}{c^2 x^2}} x^4} \, dx}{2 c}\\ &=-\frac{a+b \text{csch}^{-1}(c x)}{2 x^2}+\frac{b \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1+\frac{x^2}{c^2}}} \, dx,x,\frac{1}{x}\right )}{2 c}\\ &=\frac{b c \sqrt{1+\frac{1}{c^2 x^2}}}{4 x}-\frac{a+b \text{csch}^{-1}(c x)}{2 x^2}-\frac{1}{4} (b c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{c^2}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{b c \sqrt{1+\frac{1}{c^2 x^2}}}{4 x}-\frac{1}{4} b c^2 \text{csch}^{-1}(c x)-\frac{a+b \text{csch}^{-1}(c x)}{2 x^2}\\ \end{align*}

Mathematica [A]  time = 0.0331019, size = 66, normalized size = 1.32 \[ -\frac{a}{2 x^2}+\frac{b c \sqrt{\frac{c^2 x^2+1}{c^2 x^2}}}{4 x}-\frac{1}{4} b c^2 \sinh ^{-1}\left (\frac{1}{c x}\right )-\frac{b \text{csch}^{-1}(c x)}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCsch[c*x])/x^3,x]

[Out]

-a/(2*x^2) + (b*c*Sqrt[(1 + c^2*x^2)/(c^2*x^2)])/(4*x) - (b*ArcCsch[c*x])/(2*x^2) - (b*c^2*ArcSinh[1/(c*x)])/4

________________________________________________________________________________________

Maple [B]  time = 0.182, size = 100, normalized size = 2. \begin{align*}{c}^{2} \left ( -{\frac{a}{2\,{c}^{2}{x}^{2}}}+b \left ( -{\frac{{\rm arccsch} \left (cx\right )}{2\,{c}^{2}{x}^{2}}}-{\frac{1}{4\,{c}^{3}{x}^{3}}\sqrt{{c}^{2}{x}^{2}+1} \left ({\it Artanh} \left ({\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}} \right ){c}^{2}{x}^{2}-\sqrt{{c}^{2}{x}^{2}+1} \right ){\frac{1}{\sqrt{{\frac{{c}^{2}{x}^{2}+1}{{c}^{2}{x}^{2}}}}}}} \right ) \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/x^3,x)

[Out]

c^2*(-1/2*a/c^2/x^2+b*(-1/2/c^2/x^2*arccsch(c*x)-1/4*(c^2*x^2+1)^(1/2)*(arctanh(1/(c^2*x^2+1)^(1/2))*c^2*x^2-(
c^2*x^2+1)^(1/2))/((c^2*x^2+1)/c^2/x^2)^(1/2)/c^3/x^3))

________________________________________________________________________________________

Maxima [B]  time = 0.997988, size = 142, normalized size = 2.84 \begin{align*} \frac{1}{8} \, b{\left (\frac{\frac{2 \, c^{4} x \sqrt{\frac{1}{c^{2} x^{2}} + 1}}{c^{2} x^{2}{\left (\frac{1}{c^{2} x^{2}} + 1\right )} - 1} - c^{3} \log \left (c x \sqrt{\frac{1}{c^{2} x^{2}} + 1} + 1\right ) + c^{3} \log \left (c x \sqrt{\frac{1}{c^{2} x^{2}} + 1} - 1\right )}{c} - \frac{4 \, \operatorname{arcsch}\left (c x\right )}{x^{2}}\right )} - \frac{a}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x^3,x, algorithm="maxima")

[Out]

1/8*b*((2*c^4*x*sqrt(1/(c^2*x^2) + 1)/(c^2*x^2*(1/(c^2*x^2) + 1) - 1) - c^3*log(c*x*sqrt(1/(c^2*x^2) + 1) + 1)
 + c^3*log(c*x*sqrt(1/(c^2*x^2) + 1) - 1))/c - 4*arccsch(c*x)/x^2) - 1/2*a/x^2

________________________________________________________________________________________

Fricas [A]  time = 2.2034, size = 167, normalized size = 3.34 \begin{align*} \frac{b c x \sqrt{\frac{c^{2} x^{2} + 1}{c^{2} x^{2}}} -{\left (b c^{2} x^{2} + 2 \, b\right )} \log \left (\frac{c x \sqrt{\frac{c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right ) - 2 \, a}{4 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x^3,x, algorithm="fricas")

[Out]

1/4*(b*c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) - (b*c^2*x^2 + 2*b)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)
) - 2*a)/x^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{acsch}{\left (c x \right )}}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/x**3,x)

[Out]

Integral((a + b*acsch(c*x))/x**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arcsch}\left (c x\right ) + a}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x^3,x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/x^3, x)